

KADI SARVA VISHWAVIDYALAYA, GANDHINAGAR

B.Sc. Curriculum as Per NEP Chemistry Course for Semester 1

W.E.F. June 2023

Chemistry Major Course -1 <a href="https://doi.org/10.1001/j.jup.1001/j.jup.10.1001/j.jup.10

LEARNING OUTCOMES:

- In this course, student will delve into the concept of the origin of chemistry, including the formation of molecules
- Student will acquire knowledge regarding the structure, function, and practical applications of various chemicals
- They will develop a comprehensive understanding of the chemical properties of compounds, as well as gain insights into the behaviour of chemical ions.

		Teaching Scheme			Examination			
Subject	Subject Subject		Credits		Scheme			Total
Code	Title			Cicuits			Max	Marks
Couc	1100				Hrs.		Marks	
		Theory	Practical			Mid		
		hrs	hrs			Term	End	
		Per	Per Week				Ter	
		Week					m	
CHM203-		4	0	4	2.5	50	50	100
1C	Fundamentals							
	of Chemistry-I							

Contents

Unit 1: Chemical Bonding

• Valence bond theory, its application and limitation of VBT • Directional characteristics of covalent bond • Types of hybridization and shape of simple inorganic molecules (BeCl₂, BCl₃, CH₄, PCl₅, SF₆) • V.S.E.P.R. theory for NH₃, H₂O, BF₄ • M.O. Theory-Energy level diagram for homo nucleus diatomic molecules (N₂ and O₂) and hetero diatomic molecule (CO, HF, HCl and NO), Bond strength, Bond energy, Fajan's rule, polarization power, Dipole moment, Electronegativity.

Teaching Hours: 15 (Weightage 25%)

• s and p-block elements- Periodicity, properties, diagonal relationship, salient features of hydrides, oxides, hydroxides, carbonates, sulphates

KADI SARVA VISHWAVIDYALAYA

Unit 2: Structure Properties and Reaction Mechanism

Teaching Hours: 15 (Weightage 25%)

Teaching Hours: 15 (Weightage 25%)

Teaching Hours: 15 (Weightage 25%)

- Intramolecular forces (Hydrogen bonding, dipole-dipole interaction, Van der Waals forces) Electromeric effect Inductive effect Resonance effect (draw resonating structures of Nitro benzene, Chlorobenzene, Phenoxide ion, Anilinium ion, Acetate ion) Hyper conjugation (o,p-directing group and their effect, Stability of Carbonium ion, Carbanions and Free radicals)
- Types of reaction intermediates, Fission of Co-Valant bond (With at least one example of each intermediates) Types of reagents. Types of organic reaction with

mechanism. • Substitution reactions (Nucleophilic & Electrophilic) • Addition reactions (Nucleophilic & Electrophilic) • Elimination reactions (E1 & E2), Basics of Aromaticity

Unit 3: Physical and Analytical Chemistry

- Atomic structure- Dual nature of electron, De Broglie equation, Davisson and Germer experiment, Heisenberg uncertainty principle, Schrodinger wave equation (only definition, no derivation), significance of ψ and ψ^2 , probability distribution curve, shapes of s, p and orbitals, Zeeman and Stark effects
- Introduction to Analytical Chemistry Classification of Classical and Electro
 Analytical Techniques. Literature of Analytical Chemistry (Names of Author and
 Publishers for Any Ten Books, Journals and Reviews) Criterion for Selection of
 analytical Techniques. Analytical Data Treatment Error, Types of errors, Accuracy
 and Precision. Statistical Terms: Mode, Average, Median, Deviation, Average
 Deviation, Relative Average Deviation, Standard Deviation & Coefficient of
 variance. Q-Test for the rejection of result and related numerical, Grubb's Test

Unit 4: Thermodynamics

• Thermodynamics (only introduction) • System and surrounding- work & heat, state function, thermodynamic process, internal energy, enthalpy, free energy, maximum work function. • First law of thermodynamics • Heat capacity, specific and molar heat capacity, heat capacity at constant volume and pressure and their relationship • Work done in adiabatic and isothermal reversible expansion of an ideal gas. • Second law of thermodynamics • Carnot cycle and its efficiency • Concept of entropy; entropy change for an ideal gas under different conditions, entropy change for mixture of ideal gases • Gibbs-Helmholtz equation, Want Hoff Isochore and Isotherm, Numerical.

- 1. 'Concise Inorganic Chemistry' J.D.Lee, 5th edn.
- 2. Text book of Organic Chemistry, Arun Bahal, S.Chand.
- 3. Principal of Physical Chemistry by Puri, Sharma, Pathania.
- 4. Analytical Chemistry, Garry D.Christain.

Chemistry Major Course -2 CHM204-1C -CHEMISTRY PRACTICALS-I

LEARNING OUTCOMES:

- Throughout this course, students will cultivate an understanding of chemical systems and thermodynamics
- They will acquire knowledge regarding the structural orientation of molecules in space and their respective functions
- Furthermore, students will develop a comprehensive understanding of the behavior of solutions in terms of acid-base interactions.

		Teaching Scheme			Total		
Subject Code	Subject Title	Scheme	Credits	Hrs.	Scheme Max Marks		Marks
		Practical hrs Per Week		1113.	Mid Term	End Ter m	
CHM204- 1C	Chemistry Practicals-I	8	4	5	50	50	100

Unit 1: Chemistry Practicals

(Weightage 50%)

- 1. Introductory Knowledge of Laboratory Glassware
- 2. Volumetric titration (MINIMUM 8)
- To determine the strength of NaOH and Na₂CO₃ present in the solution mixture of NaOH & Na₂CO₃ and to find out their percentage composition.
- To determine the strength of NaHCO₃ and Na₂CO₃ present in the solution mixture of NaHCO₃ & Na₂CO₃ and to find out their percentage composition.
- To determine the Normality, gram/liter and molarities of H₂C₂O₄, 2H₂O and H₂SO₄ present in the solution mixture of H₂C₂O₄, 2H₂O & H₂SO₄ by using X N NaOH and Y N KMnO₄ solutions.
- To determine the Normality, gram/liter and molarity of H₂C₂O₄, 2H₂O and K₂C₂O₄ present in the solution mixture of H₂C₂O₄, 2H₂O & K₂C₂O₄ by using NaOH and KMnO₄ solutions.
- To determine the amount of Ca⁺² and Mg⁺² ion by EDTA solution from the mixture solution of CaCl₂ and MgCl₂.
- To estimate the strength of given Mohr's salt by titrating it against KMnO4
- To estimate the strength of CuSO4 solution iodometrically by titrating it against Na2S2O3 solution.
- Estimation of Fe2+ by titrating it with K₂Cr₂O₇using Diphenylamine as an internal indicator.
- Estimation of number of water of crystallization in Mohr's salt by titrating with KMnO4.

KADI SARVA VISHWAVIDYALAYA

- 3. Melting point and Boiling point (Any two organic compounds)
- 4. Calibration of burette, Pipette and measuring flask

Unit 2: Inorganic Salts

(Weightage 50%)

Semi micro Analysis: - (Minimum TEN)

- Cation analysis; separation and identification of ions from group I, II, III-A, III-B, IV, V-A, V-B.
- Anion analysis like Cl⁻, Br⁻, I⁻, NO₃⁻, NO₂⁻, SO₄²⁻, SO₃²⁻, S²⁻, CO₃²⁻, CrO₄²⁻ (Water Soluble and insoluble).

- 1. Vogel, Arthur I: A Test book of Quantitative Inorganic Analysis (Rev. by GH Jeffery and others) 5th Ed. The English Language Book Society of Longman
- 2. Willard, Hobert H. et. al: Instrumental Methods of Analysis, 7th Ed. Wardsworth Publishing Company, Belmont, California, USA, 1988.
- 3. Christian, Gary D; Analytical Chemistry, 6th Ed. New York- John Willy, 2004.
- 4. Harris, Daniel C,Quantitative Chemical Analysis, 3 rd Edition, W.H. Freeman and Company, New York, 2001.
- 5. Khopkar, S.M. Basic Concepts of Analytical Chemistry New Age, International Publisher, 2009.
- 6. Koogs, West and Holler, Fundamentals of Analytical Chemistry, 6 th Edition, Sauders College Publishing, New York. 1991.

Chemistry Minor Course- Semester 1 CHE202-1C - BASICS OF CHEMISTRY-I

LEARNING OUTCOMES:

- In this course, student will delve into the concept of the origin of chemistry, including the formation of molecules with different hybridization.
- Student will acquire knowledge regarding the structure, function, and practical applications of various chemicals
- They will develop a comprehensive understanding of the chemical properties of compounds, as well as gain insights into the behaviour of chemical ions

Subject	Subject Title	Teaching Scheme		Credits	Examination Scheme			Total
Code	9				Hrs.		Max Marks	Marks
		hrs	Practical hrs Per Week			Mid Term	End Ter m	
CHE202-		2	4	4	2.5	50	50	100
1C	Basics of Chemistry-I							

Unit 1: Chemical Bonding

- Valence bond theory, its application and limitation of VBT Directional characteristics of covalent bond Types of hybridization and shape of simple inorganic molecules (BeCl₂, BCl₃, CH₄, PCl₅, SF₆) V.S.E.P.R. theory for NH₃, H₂O, BF₄ M.O. Theory-Energy level diagram for homo nucleus diatomic molecules (N₂ and O₂) and hetero diatomic molecule (CO, HF, HCl and NO), Bond strength, Bond energy, Fajan's rule, polarization power, Dipole moment, Electronegativity.
- s and p-block elements- Periodicity, properties, diagonal relationship, salient features of hydrides, oxides, hydroxides, carbonates, sulphates

Unit 2: Structure Properties and Reaction Mechanism

Teaching Hours: 15

Teaching Hours: 15

- Intramolecular forces (Hydrogen bonding, dipole-dipole interaction, Van der Waals forces) Electromeric effect Inductive effect Resonance effect (draw resonating structures of Nitro benzene, Chlorobenzene, Phenoxide ion, Anilinium ion, Acetate ion) Hyper conjugation (o,p-directing group and their effect, Stability of Carbonium ion, Carbanions and Free radicals)
- Types of reaction intermediates, Fission of Co-Valant bond (With at least one example of each intermediates) Types of reagents. Types of organic reaction with mechanism. Substitution reactions (Nucleophilic & Electrophilic) Addition

KADI SARVA VISHWAVIDYALAYA

reactions (Nucleophilic & Electrophilic) • Elimination reactions (E1 & E2), Basics of Aromaticity

Unit 3: Chemistry Practical's

- **Teaching Hours: 30**
- 1. Introductory Knowledge of Laboratory Glassware
- 2. Volumetric titration (MINIMUM 8)
- To determine the strength of NaOH and Na₂CO₃ present in the solution mixture of NaOH & Na₂CO₃ and to find out their percentage composition.
- To determine the strength of NaHCO₃ and Na₂CO₃ present in the solution mixture of NaHCO₃ & Na₂CO₃ and to find out their percentage composition.
- To determine the Normality, gram/liter and molarities of H₂C₂O₄, 2H₂O and H₂SO₄ present in the solution mixture of H₂C₂O₄, 2H₂O & H₂SO₄ by using X N NaOH and Y N KMnO₄ solutions.
- To determine the Normality, gram/liter and molarity of H₂C₂O₄, 2H₂O and K₂C₂O₄ present in the solution mixture of H₂C₂O₄, 2H₂O & K₂C₂O₄ by using NaOH and KMnO₄ solutions.
- To determine the amount of Ca⁺² and Mg⁺² ion by EDTA solution from the mixture solution of CaCl₂ and MgCl₂.
- To estimate the strength of given Mohr's salt by titrating it against KMnO4
- To estimate the strength of CuSO4 solution iodometrically by titrating it against Na2S2O3 solution.
- Estimation of Fe2+ by titrating it with K2Cr2O7using Diphenylamine as an internal indicator.
- Estimation of number of water of crystallization in Mohr's salt by titrating with KMnO4
- 3. Melting point and Boiling point (Any two organic compounds)
- 4. Calibration of burette, Pipette and measuring flask

- 1. 'Concise Inorganic Chemistry' J.D.Lee, 5th edn.
- 2. Text book of Organic Chemistry, Arun Bahal, S.Chand.
- 3. Vogel, Arthur I: A Test book of Quantitative Inorganic Analysis (Rev. by GH Jeffery and others) 5th Ed. The English Language Book Society of Longman
- 4. Willard, Hobert H. et. al: Instrumental Methods of Analysis, 7th Ed. Wardsworth Publishing Company, Belmont, California, USA, 1988.
- 5. Christian, Gary D; Analytical Chemistry, 6th Ed. New York- John Willy, 2004.
- 6. Harris, Daniel C,Quantitative Chemical Analysis, 3 rd Edition, W.H. Freeman and Company, New York, 2001.
- 7. Khopkar, S.M. Basic Concepts of Analytical Chemistry New Age, International Publisher, 2009.
- 8. Koogs, West and Holler, Fundamentals of Analytical Chemistry, 6 th Edition, Sauders College Publishing, New York. 1991.

Chemistry Multidisciplinary Course – Semester 1 MDC213-1C - INTRODUCTION TO CHEMISTRY-I

LEARNING OUTCOMES:

- Students will gain Knowledge of basic principles of chemistry, types of solutions, acidbase concept, periodic table and important chemical properties
- Through this the students will understand importance of different compounds based on various chemical parameters like thermodynamics and kinetics
- Students will get a chance to learn the naming of simple organic compounds.

Subject	Subject Title	Teaching Scheme		Credits	Examination Scheme			Total
Code	Subject Title			Credits	Hrs.		Max Marks	Marks
		hrs	Practical hrs Per Week		1113.	Mid Term	End Ter m	
MDC213- 1C	Introduction to Chemistry-I	2	4	4	2.5	50	50	100

Unit 1: Solution and Concentration

Mole concept, Mole fraction, Concentration terms - percentage, ppm, ppb, g/L, molarity, normality, molality, calculation of masses and volumes for preparation of solutions and their practical approach, Solutions, components of a solution, types of solution, solubility, Buffer solutions, saturated solutions, Concentrate and dilute solutions

Teaching Hours: 15

Teaching Hours: 15

Unit 2. Chemical Properties and Principles

Periodic table and periodicity, Acid base theories, Interaction forces, IUPAC nomenclature of Organic main functional groups, Definition of thermodynamics, kinetics and equilibrium. Stoichiometry.

Density, Viscosity, Surface tension, Ostwald dilution law, Ionic Strength, Conductivity, pH, common ion effect, solubility product, residue, precipitation, Crystallization.

Unit 3: Chemistry Practicals (Each 2 times)

- **Teaching Hours: 30**
- Preparation of Molar, Molal, % w/w, %w/v, ppm solution
- Find out the surface tension and viscosity of given sample
- To recrystallize the given organic compound using water/ alcohol as a solvent
- Find out the melting/ Boiling point of given sample
- Find out the concentration of given unknown solution using simple titration.
- Find out the acidity and basicity of given sample solution

- 1. 'Concise Inorganic Chemistry' J.D.Lee, 5th edn.
- 2. Text book of Organic Chemistry, Arun Bahal, S.Chand.
- 3. Vogel, Arthur I: A Test book of Quantitative Inorganic Analysis (Rev. by GH Jeffery and others) 5th Ed. The English Language Book Society of Longman

Chemistry SEC (Skill Enhancement Couse)— Semester1 SEC212-1C - CHEMISTRY INSTRUMENTATION AND LABORATORY SKILLS-I

LEARNING OUTCOMES:

☐ The objective of this course is to foster proficiency in fundamental knowledge of chemistry laboratories, laboratory equipment, preparation of solutions ☐ Application of physicochemical principles in laboratory experiments.

G 1		Teaching Scheme		G 14	Examination Scheme			Total
Subject Code	Subject Title			Credits	Hrs.		Max Marks	Marks
		hrs	Practical hrs Per Week		1115.	Mid Term	End Ter m	
	Chemistry Instrumentation and laboratory skills-I	2	0	2	2	25	25	50

Details

Unit 1. Laboratory apparatus & their uses

Beaker, test tube, boiling tube, conical flask/ Erlenmeyer flask, filtration flask, round bottom flask, flat bottom flask, funnel, separating funnel, watch glass, measuring cylinder, petridish, desiccator, measuring cylinder, glass rod, glass tube. Volumetric flask, burette, pipette, analytical balance, electronic balance. Heating apparatus: Bunsen burner, water bath, sand bath, hot air oven, heating mantle. Buchner funnel, burner, test tube stands, tong, burette stand, clamp, china dish, wire gauze, cork, vacuum pumps, crucibles, clay pipe triangle, pestle and mortar, spatulas, thermometer, pH meter, Kipp's apparatus, Safe Handling of

(Weightage:50%)

Chemicals and Glass wares

Unit 2: Solvent and Reagents

(Weightage :50%)

Reagents: Classification of reagents according to their action; (i) acids (ii) bases (iii) salts (iv) complexing agents (v) oxidizing and reducing agents (vi) precipitating agents (vii) chelating agents. Each type to be explained with at least one suitable example. Primary and secondary standards: Definition, characteristics, uses examples for different types of reactions. Solvent: Solute, Solvent & Solution, classification of solvents (i) Protic and aprotic (ii) Acidic, basic amphiprotic and neutral (iii) Aqueous and non-aqueous (iv) Polar and nonpolar. Each type is to be explained with at least one example.

- 1. Vogel, Arthur I: A Test book of Quantitative Inorganic Analysis (Rev. by GH Jeffery and others) 5th Ed. The English Language Book Society of Longman
- 2. Willard, Hobert H. et. al: Instrumental Methods of Analysis, 7th Ed. Wardsworth Publishing Company, Belmont, California, USA, 1988.
- 3. Christian, Gary D; Analytical Chemistry, 6th Ed. New York- John Willy, 2004.
- 4. Harris, Daniel C, Quantitative Chemical Analysis, 3 rd Edition, W.H. Freeman and Company, New York, 2001.
- 5. Khopkar, S.M. Basic Concepts of Analytical Chemistry New Age, International Publisher, 2009.
- 6. Koogs, West and Holler, Fundamentals of Analytical Chemistry, 6 th Edition, Sauders College Publishing, New York. 1991.