

# KADI SARVA VISHWAVIDYALAYA, GANDHINAGAR



## **B.Sc. Curriculum as Per NEP Chemistry Course for Semester 2**

W.E.F. June 2023



### **Chemistry Major Course -1**

### **CHM211-1C FUNDAMENTALS OF CHEMISTRY-II**

### **LEARNING OUTCOMES:**

- In this course, student will understand the concept of the transition, lanthanide and actinide elements including their various properties.
- Student will acquire knowledge regarding the structure, mechanism and various concept of reactivity, acid –base concept.
- They will develop a comprehensive understanding of the chemical properties of inorganic-organic compounds, as well as gain insights into the behavior of chemical concepts and kinetics.

| Subject<br>Code             | Subject<br>Title                | Teaching Scheme           |                              |         | Examination<br>Scheme |             |             |       |
|-----------------------------|---------------------------------|---------------------------|------------------------------|---------|-----------------------|-------------|-------------|-------|
|                             |                                 |                           |                              |         |                       | Max Marks   |             | Total |
|                             |                                 | Theory<br>hrs<br>Per Week | Practical<br>hrs<br>Per Week | Credits | Hrs.                  | Mid<br>Term | End<br>Term | Marks |
| <u>CHM211-</u><br><u>1C</u> | Fundamentals<br>of Chemistry-II | 4                         | 0                            | 4       | 2.5                   | 50          | 50          | 100   |

### Contents

| Unit 1: Chemistry of elements                                                                                                                                                                                         | <b>Teaching Hours: 15</b>                                                                                                                                                        | (Weightage 25%)                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| <ul> <li>d-block elements- Electronic C</li> <li>Lanthanides and Actinides -El<br/>methods</li> </ul>                                                                                                                 | onfiguration. Oxidation state, Period<br>lectronic Configuration. Oxidation st                                                                                                   | ic properties, Basic properties<br>ate, Contraction, Separation                                             |
| Unit 2: Electrophilic Aromatic Substit                                                                                                                                                                                | tution Teaching Hours: 15                                                                                                                                                        | (Weightage 25%)                                                                                             |
| <ul> <li>Introduction, Effect of substitue<br/>Classification of substituent gro<br/>Sulfonation, Friedel-Craft alkyla<br/>benzenes, Electrophilic aromatic<br/>orientation, Electron release via</li> </ul>          | nt groups, Determination of orientati<br>ups, Orientation and synthesis, Mech<br>ation and halogenations, Orientation<br>c substitution (Two steps), Theory of<br>resonance      | on and relative reactivity,<br>nanism of nitration,<br>in mono and disubstitued<br>Freactivity, Theory of   |
| Unit 3: Acid Base concept                                                                                                                                                                                             | <b>Teaching Hours: 15</b>                                                                                                                                                        | (Weightage 25%)                                                                                             |
| <ul> <li>Proton Acids-Bases theory, Lew acidity and basicity of organic c hydrogen bonding</li> <li>Hard and Soft Acids and Bases( Pearson's HSAB concept, Acid electronegativity with hardness and bases)</li> </ul> | vis Acids-Bases theory, Scale of acids<br>compounds, Effect of hybridization, S<br>HSAB)- Classification of Acid and E<br>base strength vs hardness and softnes<br>and softness. | ity-basicity, Factors effecting<br>Steric effects, Effects by<br>Bases as hard and soft.<br>ss, Relation of |



#### Unit 4: Chemical kinetics

**Teaching Hours: 15** 

(Weightage 25%)

Rate of reaction, Order of reaction, Molecularity, Pseudo order reaction, • Rate equation for zero, first and second order reaction. (a=b), (a≠b)• Characteristics of second order reaction.• Rate equation for third order reaction (a=b=c)• Characteristics of third order reaction.• Numerical

#### **Reference books:**

- 1. 'Concise Inorganic Chemistry' J.D.Lee, 5th edn.
- 2. Text book of Organic Chemistry, ArunBahal, S.Chand.
- 3. Principal of Physical Chemistry by Puri, Sharma, Pathania.
- 4. Analytical Chemistry, Garry D.Christain.



### **Chemistry Major Course -2** <u>CHM212-1C CHEMISTRY PRACTICALS-II</u>

### **LEARNING OUTCOMES:**

- They will acquire knowledge regarding the structural orientation of organic molecules andvarious test of their respective functional groups.
- Furthermore, students will develop a comprehensive understanding of the properties of organic compounds and their derivatives.
- Throughout this course, students will have practical understanding of chemical kinetics and some physicochemical properties.

|                             |                            | Teaching                  |         |      |              |             |       |
|-----------------------------|----------------------------|---------------------------|---------|------|--------------|-------------|-------|
| Subject<br>Code             | Subject Title              | Scheme                    |         |      | Max<br>Marks |             | Total |
|                             |                            | Practical hrs<br>Per Week | Credits | Hrs. | Mid<br>Term  | End<br>Term | Marks |
| <u>CHM212-</u><br><u>1C</u> | Chemistry<br>Practicals-II | 8                         | 4       | 5    | 50           | 50          | 100   |

UNIT-I Practical (Organic), Any Ten

**Teaching Hours: 60** 

- Identification of an organic compound through the functional group analysis, Determination of melting point and boiling point, Preparation of suitable derivative.
- List of compounds Acids: Benzoic acid, Cinnamic acid, Phthalic acid, Oxalic acid, Succinic acid.
- Phenols:  $\alpha$ -Naphthol,  $\beta$  Naphthol.
- Bases: p-Toludine, Diphenylamine, Aniline.
- Neutrals: Naphthalene, Anthracene, Acetamide, Benzamide, Acetanilide,m-Dinitrobenzene, Urea, Thiourea, Toluene, Acetone, Benzaldehyde,Methy acetate, Ethyl acetate, Ethanol, 1-Propanol, Glycerol, Chloroform, Carbon tetrachloride, Chlorobenzene, Nitrobenzene.

**UNIT-II Practical (Physical)** 

**Teaching Hours: 60** 

- Chemical Kinetics Experiments
- To study the kinetics of the reaction of decomposition of H<sub>2</sub>O<sub>2</sub> catalysis by iodine ion (Clock reaction)
- Effect of concentration and temperature on the rate of reaction between Sodium Thiosulphate and Hydrochloric acid.
- Reaction between Potassium Iodate, (KIO<sub>3</sub>) and Sodium Sulphite: (Na<sub>2</sub>SO<sub>3</sub>) using starch solution as an indicator (clock reaction).



#### • Viscosity (Any two)

- To determine the viscosity of different mixtures of liquid A and B and determine the percentage composition of unknown mixture by graphical method
- Stalagmometry
- To determine the surface tension and compare cleaning-efficiency of two samples of a detergent or soap with stalagmometer
- Surface Chemistry (Any Two)
- To prepare colloidal solution (sol) of starch and gum .
- To prepare ferric hydroxide, [Fe(OH)<sub>3</sub>] sol. And aluminium hydroxide, [Al(OH)<sub>3</sub>] sol.
- To study the effectiveness of different common oils (castor oil, cotton seed oil, coconut oil, kerosene oil, mustard oil) in forming emulsions.
- To compare the effectiveness of a number of emulsifying agents in forming emulsions.

#### Reference books:

[1] Vogel AI, Furniss BS. Vogel's textbook of practical organic chemistry. 5th ed. London: Longman Scientific & Technical; 1989.

[2] Principle of Physical Chemistry by Puri, Sharma, Pathania.



### Chemistry Minor Course- Semester II <u>CHE207-1C BASICS OF CHEMISTRY-II</u>

### **LEARNING OUTCOMES:**

- In this course, student will understand the concept of the transition, lanthanide and actinide elements including their various properties.
- Student will acquire knowledge regarding the structure, mechanism and various concept of reactivity, orientation, and electron resonance.
- Furthermore, students will develop a comprehensive understanding of the behavior of organic compounds preparation with their derivatives.

|                             |                           | Taaabi                    | ng Sahama                    |         | Examination<br>Scheme |              |             | Total |
|-----------------------------|---------------------------|---------------------------|------------------------------|---------|-----------------------|--------------|-------------|-------|
| Subject<br>Code             | Subject Title             | reaching Scheme           |                              |         |                       | Max<br>Marks |             |       |
|                             |                           | Theory<br>hrs Per<br>Week | Practical<br>hrs<br>Per Week | Credits | Hrs.                  | Mid<br>Term  | End<br>Term | Marks |
| <u>CHE207-</u><br><u>1C</u> | Basics of<br>Chemistry-II | 2                         | 4                            | 4       | 2.5                   | 50           | 50          | 100   |

#### **Unit 1: Chemistry of Elements**

•

#### **Teaching Hours: 15**

**Teaching Hours: 15** 

**Teaching Hours: 60** 

- **d-block elements-** Electronic Configuration. Oxidation state, periodic properties, Basic properties
- Lanthanides and Actinides -Electronic Configuration. Oxidation state, Contraction, Separation methods

### Unit 2: Electrophilic Aromatic Substitution

Introduction, Effect of substituent groups, Determination of orientation and relative reactivity, Classification of substituent groups, Orientation and synthesis, Mechanism of nitration, Sulfonation, Friedel-Craft alkylation and halogenations, Orientation in mono and disubstitued benzenes, Electrophilic aromatic substitution (Two steps), Theory of reactivity, Theory of orientation, Electron release via resonance

### UNIT 3: Practical (Organic), Any Ten

- Identification of an organic compound through the functional group analysis, Determination of melting point and boiling point, Preparation of suitable derivative.
- List of compounds
   Acids: Benzoic acid, Cinnamic acid, Phthalic acid, Oxalic acid, Succinic acid.
- Phenols:  $\alpha$ -Naphthol,  $\beta$  Naphthol.



- Bases: p-Toludine, Diphenylamine, Aniline.
- Neutrals: Naphthalene, Anthracene, Acetamide, Benzamide, Acetanilide,m-Dinitrobenzene, Urea,Thiourea, Toluene, Acetone, Benzaldehyde,Methy acetate, Ethyl acetate, Ethanol, 1-Propanol, Glycerol, Chloroform, Carbon tetrachloride, Chlorobenzene, Nitrobenzene.

#### **Reference books:**

- 1. 'Concise Inorganic Chemistry' J.D.Lee, 5th edn.
- 2. Text book of Organic Chemistry, ArunBahal, S.Chand.
- 3. Principle of Physical Chemistry by Puri, Sharma, Pathania.
- 4. Analytical Chemistry, Garry D.Christain
- 5. Fundamentals of Analytical Chemistry D.A.Skoog, D.M. West &F.J. Holler
- 6. Principles of Analytical Chemistry J.H. Kennedy
- 7. Analytical Chemistry Principles & Techniques L.G. Hargis



### Chemistry Multidisciplinary Course – Semester II <u>MDC218-1C INTRODUCTION TO CHEMISTRY-I</u>I

### **LEARNING OUTCOMES:**

- Student will acquire knowledge regarding the structure, mechanism and various acidbase concept with theories.
- Students will develop a comprehensive understanding of Chemical kinetics and physiochemical properties.

|                             |                                 | Taaabing Sahama           |                              |         | Examination<br>Scheme |             |             |       |
|-----------------------------|---------------------------------|---------------------------|------------------------------|---------|-----------------------|-------------|-------------|-------|
| Subject<br>Code             | Subject Title                   | reaching Scheme           |                              |         |                       | M           | Max<br>arks | Total |
|                             |                                 | Theory<br>hrs<br>Per Week | Practical<br>hrs<br>Per Week | Credits | Hrs.                  | Mid<br>Term | End<br>Term | Marks |
| <u>MDC218-</u><br><u>1C</u> | Introduction to<br>Chemistry-II | 2                         | 4                            | 4       | 2.5                   | 50          | 50          | 100   |

#### Unit 1: Acid Base concept

#### **Teaching Hours: 15**

- Proton Acids-Bases theory, Lewis Acids-Bases theory, Scale of acidity-basicity, Factors effecting acidity and basicity of organic compounds, Effect of hybridization, Steric effects, Effects by hydrogen bonding
- Hard and Soft Acids and Bases(HSAB)- Classification of Acid and Bases as hard and soft. Pearson's HSAB concept, Acid base strength vs hardness and softness, Relation of electronegativity with hardness and softness.

### Unit 2. Chemical kinetics

#### **Teaching Hours: 15**

Rate of reaction, Order of reaction, Molecularity, pseudo order reaction, 

 Rate of reaction, Order of reaction, Molecularity, pseudo order reaction, 
 Rate equation order reaction. (a=b), (a≠b)
 Characteristics of second order reaction.
 Rate equation for third order reaction (a=b=c)
 Characteristics of third order reaction.
 Numerical

### Unit 3: Practical Organic (Any Ten)

### **Teaching Hours: 60**

- Identification of an organic compound through the functional group analysis, Determination of melting point and boiling point, Preparation of suitable derivative.
- List of compounds Acids: Benzoic acid, Cinnamic acid, Phthalic acid, Oxalic acid, Succinic acid.
- Phenols:  $\alpha$ -Naphthol,  $\beta$ -Naphthol.
- Bases: p-Toludine, Diphenylamine, Aniline.
  Neutrals: Naphthalene, Anthracene, Acetamide, Benzamide, Acetanilide, m-Dinitrobenzene,
- Neutrals: Naphthalene, Anthracene, Acetamide, Benzamide, Acetanilide,m-Dinitrobenzene, Urea,Thiourea, Toluene, Acetone, Benzaldehyde,Methy acetate, Ethyl acetate, Ethanol, 1-Propanol, Glycerol, Chloroform, Carbon tetrachloride, Chlorobenzene, Nitrobenzene.



### **Reference books:**

[1] Vogel AI, Furniss BS. Vogel's textbook of practical organic chemistry. 5th ed. London: Longman Scientific & Technical; 1989.

[2] Principle of Physical Chemistry by Puri, Sharma, Pathania.



### Chemistry SEC (Skill Enhancement Couse)– Semester II <u>SEC217-1C- CHEMISTRY INSTRUMENTATION AND</u> <u>LABORATORYSKILLS-II</u>

#### **LEARNING OUTCOMES:**

- The objective of this course is to foster proficiency in fundamental knowledge of chemistry laboratories, laboratory equipment, preparation of solutions
- Application of physicochemical principles in laboratory experiments.

| Subject       | Subject Title                                               | Teaching Scheme           |                              | Credits |      | Examination<br>Scheme |                 |       |
|---------------|-------------------------------------------------------------|---------------------------|------------------------------|---------|------|-----------------------|-----------------|-------|
| Code          |                                                             |                           |                              |         | Hrs. |                       | Max<br>Marks    | Marks |
|               |                                                             | Theory<br>hrs Per<br>Week | Practical<br>hrs<br>Per Week | •       |      | Mid<br>Term           | End<br>Ter<br>m |       |
| SEC217-<br>1C | Chemistry<br>Instrumentation<br>and laboratory<br>skills-II | 2                         | 0                            | 2       | 2    | 25                    | 25              | 50    |

#### Unit 1: Separation and Purification Techniques (Weightage :50%)

Characterization, uses and selection of separation process, filtration techniques, filter paper, simple filtration, filtration through vacuum pump, distillation- types of distillation, simple distillation, fractional distillation, difference between simple and fractional distillation. Paper chromatography, Thin Layer Chromatography

#### Unit 2. Lab Testing and Quality Assurance (Weightage :50%)

Gravimetric methods, volumetric methods

Industry and sub-sectors, Standards for manufacturing in life-sciences, drug regulatory agencies, Quality control, Role of quality control chemist, Quality management systems, Productivity concept, Government regulations in industries like pharmaceuticals, food supplements, and cosmetics.

#### **Reference books**:

- 1. Vogel, Arthur I: A Test book of Quantitative Inorganic Analysis (Rev. by GH Jeffery and others) 5th Ed. The English Language Book Society of Longman
- 2. Willard, Hobert H. et. al: Instrumental Methods of Analysis, 7th Ed. Wardsworth Publishing Company, Belmont, California, USA, 1988.
- 3. Skoog D.A., West D.M., Holler, F.J., Crouch S.R., Fundamentals of Analytical Chemistry, 9<sup>th</sup> Edition, Cengage learning.

4. Quality control chemist participant manual prepared by LSSSDC in collaboration with NSDC India.

5. iso.org